X-Git-Url: https://git.ctpug.org.za/?p=tabakrolletjie.git;a=blobdiff_plain;f=tabakrolletjie%2Frays.py;h=a475d8fb27bb6c680a90555cad7dc2a4f6043954;hp=d6d0a695db90556a29f98ffc958798aac5e8c2a8;hb=3341713feb17c2469631de0ef6078e5a4473b28c;hpb=1f2682e60071bce98ded8f52747a3742e056d272 diff --git a/tabakrolletjie/rays.py b/tabakrolletjie/rays.py index d6d0a69..a475d8f 100644 --- a/tabakrolletjie/rays.py +++ b/tabakrolletjie/rays.py @@ -1,5 +1,9 @@ """ Light ray manipulation. Pew. Pew. Pew. Wommmm. """ +import math + +import pygame.rect + import pymunk import pymunk.autogeometry import pymunk.pygame_util @@ -8,7 +12,7 @@ from .constants import SCREEN_SIZE from .utils import debug_timer -def screen_rays(pos): +def screen_rays(): """ An iterable that returns ordered rays from pos to the edge of the screen, starting with the edge point (0, 0) and continuing clockwise in pymunk coordinates. @@ -26,13 +30,17 @@ def screen_rays(pos): yield pymunk.Vec2d(x, bottom) -@debug_timer("rays.calculate_ray_polys", True) +@debug_timer("rays.calculate_ray_polys") def calculate_ray_polys(space, position, light_filter): + """ Calculate a set of convex RayPolys that cover all the areas that light + can reach from the given position, taking into account the obstacles + present in the space. + """ position = pymunk.Vec2d(position) vertices = [position] start, end = None, None ray_polys = [] - for ray in screen_rays(position): + for ray in screen_rays(): info = space.segment_query_first(position, ray, 1, light_filter) point = ray if info is None else info.point vertices.append(point) @@ -44,37 +52,195 @@ def calculate_ray_polys(space, position, light_filter): query_prev = trial_poly.point_query(end) query_pos = trial_poly.point_query(position) if query_prev.distance < -0.01 or query_pos.distance < -0.01: - ray_polys.append(RayPoly(start, end, vertices[:-1])) + ray_polys.append(RayPoly(position, vertices[:-1])) start = vertices[-1] vertices = [position, start] else: vertices = trial_poly.get_vertices() end = point if len(vertices) > 2: - ray_polys.append(RayPoly(start, end, vertices)) + ray_polys.append(RayPoly(position, vertices)) return ray_polys +def to_pymunk_radians(deg): + """ Convert degrees in [0, 360] to radians in (-pi, pi]. + + Return None if degrees is None. + """ + if deg is None: + return None + deg = deg * math.pi / 180.0 + if deg > math.pi: + deg -= 2 * math.pi + return deg + + class RayPolyManager(object): - def __init__(self, body, ray_filter): - self._body = body - self._ray_filter = ray_filter - self._rays = [] + def __init__( + self, body, position, ray_filter, radius_limits, direction, + spread): + self._body = body # light's body + self._position = pymunk.Vec2d(position) # light's position + self._ray_filter = ray_filter # light filter + self._rays = [] # list of RayPolys + self._direction = None # normal vector for direction + self._start = None # normal vector in direction of start angle limit + self._end = None # normal vector in direction of end angle limit + self._set_angle_limits(direction, spread) + if direction: + self.direction = direction # Update direction + self._max_radius = None # maximum radius in pixels + self._min_radius = None # minimum radius in pixels + self._set_radius_limits(radius_limits) + self._old_poly_cache = None # last polys added to the space + self._poly_cache = None # list of pymunk.Polys for rays + self._space = None # space the rays form part of + + def set_space(self, space): + self._space = space + self._rays = calculate_ray_polys( + self._space, self._position, self._ray_filter) + self._poly_cache = None + + def update_shapes(self): + if self._old_poly_cache: + self._space.remove(*self._old_poly_cache) + new_polys = self._old_poly_cache = self.polys() + self._space.add(*new_polys) + + @property + def position(self): + return self._position + + @property + def max_radius(self): + return self._max_radius + + @max_radius.setter + def max_radius(self, value): + self._max_radius = value or 0.0 + + @property + def min_radius(self): + return self._min_radius + + @min_radius.setter + def min_radius(self, value): + self._min_radius = value or 0.0 + + def reaches(self, position): + distance = self.position.get_distance(position) + return (self._min_radius <= distance <= self._max_radius) - def generate_rays(self, space, position): - self._rays = calculate_ray_polys(space, position, self._ray_filter) + def _set_radius_limits(self, radius_limits): + if radius_limits is None or not radius_limits[0]: + self._min_radius = 0 + else: + self._min_radius = radius_limits[0] + if radius_limits is None or not radius_limits[1]: + self._max_radius = 50.0 + else: + self._max_radius = radius_limits[1] + + def rotatable(self): + return self._direction is not None + + @property + def direction(self): + if self._direction is None: + return 0 + return self._direction.angle_degrees + + @direction.setter + def direction(self, degrees): + spread = self._direction.get_angle_between(self._start) + self._direction.angle_degrees = degrees + self._start = self._direction.rotated(spread) + self._end = self._direction.rotated(-spread) + self._poly_cache = None + + @property + def spread(self): + if not self._direction: + return 2 * math.pi + return math.fabs(self._start.get_angle_between(self._end)) + + def _set_angle_limits(self, direction, spread): + if direction is None or spread is None: + self._direction = None + self._start = None + self._end = None + else: + self._direction = pymunk.Vec2d(1, 0) + self._start = self._direction.rotated_degrees(-spread/2.) + self._end = self._direction.rotated_degrees(spread/2.) + self._poly_cache = None def polys(self): - return [rp.poly(self._body, self._ray_filter) for rp in self._rays] + if self._poly_cache is None: + self._poly_cache = poly_cache = [] + for rp in self._rays: + poly = rp.poly(self._start, self._end) + if poly: + poly.body = self._body + poly.filter = self._ray_filter + poly_cache.append(poly) + return self._poly_cache + + def pygame_position(self, surface): + return pymunk.pygame_util.to_pygame(self._position, surface) + + def pygame_rect(self, surface): + half_width = self.max_radius + rect_width = half_width * 2 + rect_x, rect_y = pymunk.pygame_util.to_pygame(self._position, surface) + dest_rect = pygame.rect.Rect(rect_x, rect_y, rect_width, rect_width) + dest_rect.move_ip(-half_width, -half_width) + return dest_rect + + def pygame_polys(self, surface): + return [ + [pymunk.pygame_util.to_pygame(v, surface) + for v in poly.get_vertices()] + for poly in self.polys() + ] class RayPoly(object): - def __init__(self, start, end, vertices): - self.start = start - self.end = end - self.vertices = vertices - - def poly(self, body, filter): - shape = pymunk.Poly(body, self.vertices) - shape.filter = filter - return shape + def __init__(self, position, vertices): + self.position = position # pointy end of the conical polygon + self.vertices = vertices # all vertices in the polygon + + def _between(self, v, start, end): + if start < end: + return start <= v <= end + return (start <= v) or (v <= end) + + def poly(self, start, end): + trial = pymunk.Poly(None, self.vertices) + trial.update(pymunk.Transform.identity()) + + if start is None or end is None: + return trial # no limits + + start_info = trial.segment_query( + self.position + 1250 * start, self.position + 0.1 * start, 0) + end_info = trial.segment_query( + self.position + 1250 * end, self.position + 0.1 * end, 0) + + vertices = self.vertices[:] + vertices = [ + v for v in vertices + if self._between((v - self.position).angle, start.angle, end.angle) + ] + if start_info.shape is not None: + vertices.append(start_info.point) + if end_info.shape is not None: + vertices.append(end_info.point) + vertices.append(self.position) + + poly = pymunk.Poly(None, vertices) + if len(poly.get_vertices()) < 3: + return None + return poly