Remove unused pos arg.
[tabakrolletjie.git] / tabakrolletjie / rays.py
index 1892edf4febe9e97dd9e26806afed426780c4e9c..a475d8fb27bb6c680a90555cad7dc2a4f6043954 100644 (file)
@@ -1,13 +1,18 @@
 """ Light ray manipulation. Pew. Pew. Pew. Wommmm. """
 
 """ Light ray manipulation. Pew. Pew. Pew. Wommmm. """
 
+import math
+
+import pygame.rect
+
 import pymunk
 import pymunk
+import pymunk.autogeometry
 import pymunk.pygame_util
 
 from .constants import SCREEN_SIZE
 from .utils import debug_timer
 
 
 import pymunk.pygame_util
 
 from .constants import SCREEN_SIZE
 from .utils import debug_timer
 
 
-def screen_rays(pos):
+def screen_rays():
     """ An iterable that returns ordered rays from pos to the edge of the
         screen, starting with the edge point (0, 0) and continuing clockwise
         in pymunk coordinates.
     """ An iterable that returns ordered rays from pos to the edge of the
         screen, starting with the edge point (0, 0) and continuing clockwise
         in pymunk coordinates.
@@ -26,25 +31,216 @@ def screen_rays(pos):
 
 
 @debug_timer("rays.calculate_ray_polys")
 
 
 @debug_timer("rays.calculate_ray_polys")
-def calculate_ray_polys(space, body, position, light_filter):
+def calculate_ray_polys(space, position, light_filter):
+    """ Calculate a set of convex RayPolys that cover all the areas that light
+        can reach from the given position, taking into account the obstacles
+        present in the space.
+    """
     position = pymunk.Vec2d(position)
     vertices = [position]
     position = pymunk.Vec2d(position)
     vertices = [position]
+    start, end = None, None
     ray_polys = []
     ray_polys = []
-    for ray in screen_rays(position):
+    for ray in screen_rays():
         info = space.segment_query_first(position, ray, 1, light_filter)
         point = ray if info is None else info.point
         vertices.append(point)
         info = space.segment_query_first(position, ray, 1, light_filter)
         point = ray if info is None else info.point
         vertices.append(point)
-        if len(vertices) > 3:
+        if len(vertices) == 2:
+            start = vertices[1]
+        elif len(vertices) > 3:
             trial_poly = pymunk.Poly(None, vertices)
             trial_poly.update(pymunk.Transform.identity())
             trial_poly = pymunk.Poly(None, vertices)
             trial_poly.update(pymunk.Transform.identity())
-            query_prev = trial_poly.point_query(vertices[-2])
+            query_prev = trial_poly.point_query(end)
             query_pos = trial_poly.point_query(position)
             if query_prev.distance < -0.01 or query_pos.distance < -0.01:
             query_pos = trial_poly.point_query(position)
             if query_prev.distance < -0.01 or query_pos.distance < -0.01:
-                new_poly = pymunk.Poly(body, vertices[:-1])
-                vertices = [position, vertices[-1]]
-                ray_polys.append(new_poly)
+                ray_polys.append(RayPoly(position, vertices[:-1]))
+                start = vertices[-1]
+                vertices = [position, start]
             else:
             else:
-                vertices = trial_poly.get_vertices() + [point]
+                vertices = trial_poly.get_vertices()
+        end = point
     if len(vertices) > 2:
     if len(vertices) > 2:
-        ray_polys.append(pymunk.Poly(body, vertices))
+        ray_polys.append(RayPoly(position, vertices))
     return ray_polys
     return ray_polys
+
+
+def to_pymunk_radians(deg):
+    """ Convert degrees in [0, 360] to radians in (-pi, pi].
+
+        Return None if degrees is None.
+    """
+    if deg is None:
+        return None
+    deg = deg * math.pi / 180.0
+    if deg > math.pi:
+        deg -= 2 * math.pi
+    return deg
+
+
+class RayPolyManager(object):
+    def __init__(
+            self, body, position, ray_filter, radius_limits, direction,
+            spread):
+        self._body = body  # light's body
+        self._position = pymunk.Vec2d(position)  # light's position
+        self._ray_filter = ray_filter  # light filter
+        self._rays = []  # list of RayPolys
+        self._direction = None  # normal vector for direction
+        self._start = None  # normal vector in direction of start angle limit
+        self._end = None  # normal vector in direction of end angle limit
+        self._set_angle_limits(direction, spread)
+        if direction:
+            self.direction = direction  # Update direction
+        self._max_radius = None  # maximum radius in pixels
+        self._min_radius = None  # minimum radius in pixels
+        self._set_radius_limits(radius_limits)
+        self._old_poly_cache = None  # last polys added to the space
+        self._poly_cache = None  # list of pymunk.Polys for rays
+        self._space = None  # space the rays form part of
+
+    def set_space(self, space):
+        self._space = space
+        self._rays = calculate_ray_polys(
+            self._space, self._position, self._ray_filter)
+        self._poly_cache = None
+
+    def update_shapes(self):
+        if self._old_poly_cache:
+            self._space.remove(*self._old_poly_cache)
+        new_polys = self._old_poly_cache = self.polys()
+        self._space.add(*new_polys)
+
+    @property
+    def position(self):
+        return self._position
+
+    @property
+    def max_radius(self):
+        return self._max_radius
+
+    @max_radius.setter
+    def max_radius(self, value):
+        self._max_radius = value or 0.0
+
+    @property
+    def min_radius(self):
+        return self._min_radius
+
+    @min_radius.setter
+    def min_radius(self, value):
+        self._min_radius = value or 0.0
+
+    def reaches(self, position):
+        distance = self.position.get_distance(position)
+        return (self._min_radius <= distance <= self._max_radius)
+
+    def _set_radius_limits(self, radius_limits):
+        if radius_limits is None or not radius_limits[0]:
+            self._min_radius = 0
+        else:
+            self._min_radius = radius_limits[0]
+        if radius_limits is None or not radius_limits[1]:
+            self._max_radius = 50.0
+        else:
+            self._max_radius = radius_limits[1]
+
+    def rotatable(self):
+        return self._direction is not None
+
+    @property
+    def direction(self):
+        if self._direction is None:
+            return 0
+        return self._direction.angle_degrees
+
+    @direction.setter
+    def direction(self, degrees):
+        spread = self._direction.get_angle_between(self._start)
+        self._direction.angle_degrees = degrees
+        self._start = self._direction.rotated(spread)
+        self._end = self._direction.rotated(-spread)
+        self._poly_cache = None
+
+    @property
+    def spread(self):
+        if not self._direction:
+            return 2 * math.pi
+        return math.fabs(self._start.get_angle_between(self._end))
+
+    def _set_angle_limits(self, direction, spread):
+        if direction is None or spread is None:
+            self._direction = None
+            self._start = None
+            self._end = None
+        else:
+            self._direction = pymunk.Vec2d(1, 0)
+            self._start = self._direction.rotated_degrees(-spread/2.)
+            self._end = self._direction.rotated_degrees(spread/2.)
+        self._poly_cache = None
+
+    def polys(self):
+        if self._poly_cache is None:
+            self._poly_cache = poly_cache = []
+            for rp in self._rays:
+                poly = rp.poly(self._start, self._end)
+                if poly:
+                    poly.body = self._body
+                    poly.filter = self._ray_filter
+                    poly_cache.append(poly)
+        return self._poly_cache
+
+    def pygame_position(self, surface):
+        return pymunk.pygame_util.to_pygame(self._position, surface)
+
+    def pygame_rect(self, surface):
+        half_width = self.max_radius
+        rect_width = half_width * 2
+        rect_x, rect_y = pymunk.pygame_util.to_pygame(self._position, surface)
+        dest_rect = pygame.rect.Rect(rect_x, rect_y, rect_width, rect_width)
+        dest_rect.move_ip(-half_width, -half_width)
+        return dest_rect
+
+    def pygame_polys(self, surface):
+        return [
+            [pymunk.pygame_util.to_pygame(v, surface)
+             for v in poly.get_vertices()]
+            for poly in self.polys()
+        ]
+
+
+class RayPoly(object):
+    def __init__(self, position, vertices):
+        self.position = position  # pointy end of the conical polygon
+        self.vertices = vertices  # all vertices in the polygon
+
+    def _between(self, v, start, end):
+        if start < end:
+            return start <= v <= end
+        return (start <= v) or (v <= end)
+
+    def poly(self, start, end):
+        trial = pymunk.Poly(None, self.vertices)
+        trial.update(pymunk.Transform.identity())
+
+        if start is None or end is None:
+            return trial  # no limits
+
+        start_info = trial.segment_query(
+            self.position + 1250 * start, self.position + 0.1 * start, 0)
+        end_info = trial.segment_query(
+            self.position + 1250 * end, self.position + 0.1 * end, 0)
+
+        vertices = self.vertices[:]
+        vertices = [
+            v for v in vertices
+            if self._between((v - self.position).angle, start.angle, end.angle)
+        ]
+        if start_info.shape is not None:
+            vertices.append(start_info.point)
+        if end_info.shape is not None:
+            vertices.append(end_info.point)
+        vertices.append(self.position)
+
+        poly = pymunk.Poly(None, vertices)
+        if len(poly.get_vertices()) < 3:
+            return None
+        return poly