Implement static puzzle deck construction.
[naja.git] / naja / gameboard.py
1 from random import choice
2
3 from naja.constants import(
4     BITS, DIRECTION_BITS, CONDITION_BITS, PLAYER_DEFAULTS,
5     ACT, EXAMINE, ROTATION)
6 from naja.options import options
7 from naja.player import Player
8 from naja import actions
9
10
11 class GameBoard(object):
12     """
13     A representation of the game board.
14     """
15
16     def __init__(self, state, player, board_locations):
17         self.max_health = state['max_health']
18         self.wins_required = state['wins_required']
19         self.health = state['health']
20         self.wins = state['wins']
21         self.locations = [item.copy() for item in state['locations']]
22         self.puzzle = state['puzzle']
23         self.player = player
24         self.board_locations = board_locations
25         self.player_mode = EXAMINE
26
27     @classmethod
28     def new_game(cls, deck,
29                  initial_bits=PLAYER_DEFAULTS.INITIAL_BITS,
30                  initial_pos=PLAYER_DEFAULTS.INITIAL_POS,
31                  max_health=PLAYER_DEFAULTS.MAX_HEALTH,
32                  wins_required=PLAYER_DEFAULTS.WINS_REQUIRED):
33         if options.initial_bits:
34             initial_bits = options.initial_bits
35         state = {
36             'max_health': max_health,
37             'health': max_health,
38             'wins_required': wins_required,
39             'wins': 0,
40             'locations': deck['cards'],
41             'puzzle': deck.get('puzzle', False),
42         }
43         player = Player(initial_bits, initial_pos)
44         board_locations = cls.import_board_locations(
45             cls.generate_board(deck))
46         return cls(state, player, board_locations)
47
48     @classmethod
49     def import_game(cls, definition):
50         state = definition.copy()
51         player = Player.import_player(state.pop('player'))
52         board_locations = cls.import_board_locations(
53             state.pop('board_locations'))
54         return cls(state, player, board_locations)
55
56     def export(self):
57         return {
58             'max_health': self.max_health,
59             'health': self.health,
60             'wins_required': self.wins_required,
61             'wins': self.wins,
62             'locations': [item.copy() for item in self.locations],
63             'puzzle': self.puzzle,
64             'player': self.player.export(),
65             'board_locations': self.export_board_locations(),
66         }
67
68     @classmethod
69     def import_locations(cls, locations_definition):
70         return [
71             LocationCard.import_location(definition)
72             for definition in locations_definition]
73
74     def export_board_locations(self):
75         return sorted(
76             (position, location.export())
77             for position, location in self.board_locations.iteritems())
78
79     @classmethod
80     def import_board_locations(cls, board_locations_definition):
81         return dict(
82             (tuple(position), LocationCard.import_location(definition))
83             for position, definition in board_locations_definition)
84
85     @classmethod
86     def generate_board(cls, deck):
87         if deck.get('puzzle', False):
88             return cls.generate_puzzle_board(deck)
89         else:
90             return cls.generate_random_board(deck)
91
92     @classmethod
93     def generate_puzzle_board(cls, deck):
94         assert len(deck['cards']) == 5 * 5
95         board_locations = [
96             [(i % 5, i // 5),
97              LocationCard.new_location(card.copy()).export()]
98             for i, card in enumerate(deck['cards'])
99         ]
100         return board_locations
101
102     @classmethod
103     def generate_random_board(cls, deck):
104         board_locations = []
105         for x in range(5):
106             for y in range(5):
107                 board_location = LocationCard.new_location(
108                     choice(deck['cards']).copy())
109                 board_locations.append([(x, y), board_location.export()])
110         return board_locations
111
112     def lose_health(self):
113         self.health -= 1
114         if self.health <= 0:
115             self.end_game(win=False)
116
117     def gain_health(self):
118         if self.health < self.max_health:
119             self.health += 1
120
121     def acquire_win_token(self):
122         self.wins += 1
123         if self.wins >= self.wins_required:
124             self.end_game(win=True)
125
126     def replace_card(self, position):
127         location = LocationCard.new_location(choice(self.locations).copy())
128         self.board_locations[position] = location
129
130     def shift_location_row(self, change, is_vertical):
131         px, py = self.player.position
132         shifted_locations = {}
133         mkpos = lambda i: (px, i) if is_vertical else (i, py)
134
135         for i in range(5):
136             if (px, py) == mkpos(i):
137                 continue
138             new_i = (i + change) % 5
139             if (px, py) == mkpos(new_i):
140                 new_i = (new_i + change) % 5
141             shifted_locations[mkpos(new_i)] = self.board_locations[mkpos(i)]
142
143         self.board_locations.update(shifted_locations)
144
145     def shift_locations(self, direction):
146         if BITS[direction] == BITS.NORTH:
147             self.shift_location_row(-1, is_vertical=True)
148         elif BITS[direction] == BITS.SOUTH:
149             self.shift_location_row(1, is_vertical=True)
150         elif BITS[direction] == BITS.EAST:
151             self.shift_location_row(1, is_vertical=False)
152         elif BITS[direction] == BITS.WEST:
153             self.shift_location_row(-1, is_vertical=False)
154
155     def rotate_locations(self, direction):
156         px, py = self.player.position
157         locations_to_rotate = []
158         rotated_locations = {}
159
160         if py > 0:
161             for i in range(max(0, px - 1), min(5, px + 2)):
162                 locations_to_rotate.append((i, py - 1))
163
164         if px < 4:
165             locations_to_rotate.append((px + 1, py))
166
167         if py < 4:
168             for i in reversed(range(max(0, px - 1), min(5, px + 2))):
169                 locations_to_rotate.append((i, py + 1))
170
171         if px > 0:
172             locations_to_rotate.append((px - 1, py))
173
174         if ROTATION[direction] == ROTATION.CLOCKWISE:
175             new_positions = locations_to_rotate[1:] + [locations_to_rotate[0]]
176         elif ROTATION[direction] == ROTATION.ANTICLOCKWISE:
177             new_positions = (
178                 [locations_to_rotate[-1]] + locations_to_rotate[:-1])
179
180         for old, new in zip(locations_to_rotate, new_positions):
181             rotated_locations[old] = self.board_locations[new]
182
183         self.board_locations.update(rotated_locations)
184
185     def allow_chess_move(self, chesspiece):
186         self.player.allow_chess_move(chesspiece)
187
188     def change_mode(self, new_mode):
189         """Advance to the next mode"""
190         if new_mode == self.player_mode:
191             raise RuntimeError("Inconsistent state. Setting mode %s to itself"
192                                % self.player_mode)
193         elif new_mode in (ACT, EXAMINE):
194             self.player_mode = new_mode
195         else:
196             raise RuntimeError("Illegal player mode %s" % self.player_mode)
197
198     def end_game(self, win):
199         # TODO: Find a way to not have UI stuff in game logic stuff.
200         from naja.events import SceneChangeEvent
201         from naja.scenes.lose import LoseScene
202         from naja.scenes.win import WinScene
203         if win:
204             SceneChangeEvent.post(WinScene)
205         else:
206             SceneChangeEvent.post(LoseScene)
207
208
209 class LocationCard(object):
210     """
211     A particular set of options available on a location.
212     """
213
214     def __init__(self, bitwise_operand, location_actions):
215         self.bitwise_operand = bitwise_operand
216         self.actions = location_actions
217         self.check_actions()
218
219     @classmethod
220     def import_location(cls, state):
221         location_actions = [
222             cls.build_action(definition) for definition in state['actions']]
223         return cls(state['bitwise_operand'], location_actions)
224
225     @classmethod
226     def build_action(cls, definition):
227         action_class = getattr(actions, definition['action_class'])
228         required_bits = cls.parse_bits(definition['required_bits'])
229         data = definition.get('data', {})
230         return action_class(required_bits, **data)
231
232     @classmethod
233     def new_location(cls, definition):
234         if 'bits' in definition:
235             bits = cls.parse_bits(definition['bits'])
236         else:
237             bits = cls.generate_bitwise_operand()
238         return cls.import_location({
239             'bitwise_operand': bits,
240             'actions': definition['actions'],
241         })
242
243     @classmethod
244     def parse_bits(self, bit_list):
245         # Convert names to numbers if applicable.
246         return frozenset(BITS.get(bit, bit) for bit in bit_list)
247
248     def export(self):
249         return {
250             'bitwise_operand': sorted(self.bitwise_operand),
251             'actions': [action.export() for action in self.actions],
252         }
253
254     def check_actions(self):
255         if not self.actions:
256             print "Warning: Location has no actions."
257             self.insert_default_default_action()
258         if self.actions[0].required_bits:
259             self.insert_default_default_action()
260
261     def insert_default_default_action(self):
262         self.actions.insert(0, self.build_action({
263             'action_class': 'DoNothing',
264             'required_bits': [],
265         }))
266
267     @staticmethod
268     def generate_bitwise_operand():
269         """
270         Generate a set of two or three bits. At least one direction and one
271         condition bit will be included. There is a low probability of choosing
272         a third bit from the complete set.
273         """
274         bits = set()
275         bits.add(choice(DIRECTION_BITS.values()))
276         bits.add(choice(CONDITION_BITS.values()))
277         # One in three chance of adding a third bit, with a further one in four
278         # chance that it will match a bit already chosen.
279         if choice(range(3)) == 0:
280             bits.add(choice(BITS.values()))
281         return frozenset(bits)